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Introduction

We have covered techniques to reduce variance of 
the randomized gradient steps in a minibatch or 
stochastic gradient descent algorithm, but can we 
improve upon these (SVRG, SAG/SAGA, etc)?

ADAM (orig. 2015) 

SARAH (2017)

Each has a unique approach to address variance 
reduction. Both utilize recursive gradient 
information.

ADAM

ADAptive Moment 

estimation

SARAH 

StochAstic Recursive grAdient

algoritHm
Variant of SVRG

Variant of minibatch GD, 

Momentum, RMSProp

In general, we are solving an optimization problem of the form…



Why is it important?

We are highly motivated to improve gradient descent optimization methods. Why? Computational 
efficiency when optimizing model parameters for large datasets.

ADAM is a popular optimizer 
➔ Very popular in training of neural networks (nonconvex objectives), NLP tasks, GANs, 

Reinforcement Learning

SARAH offers improved convergence over SVRG
➔ Can replace GD methods in practice for convex optimization like we have seen in this course

Applications for convex and nonconvex objectives (though we will only focus upon convex)



Assumptions (for reference)

• [CONVEX] 𝑓𝑖 is convex
𝑓𝑖 𝑦 ≥ 𝑓𝑖 𝑥 + ∇𝑓𝑖 𝑥

𝑇 𝑦 − 𝑥

• [SCONVEX] Each 𝑓𝑖 is 𝜇-strongly convex, ∃ 𝜇 > 0 𝑠. 𝑡.

𝑓𝑖 𝑦 ≥ 𝑓𝑖 𝑥 + ∇𝑓𝑖 𝑥
𝑇 𝑦 − 𝑥 +

𝜇

2
𝑦 − 𝑥

2
, ∀𝑥, 𝑦 ∈ ℝ

Note, a function is mu-strongly convex if 𝝀𝒎𝒊𝒏 𝜵𝟐𝒇 𝒙 ≥ 𝝁, 𝝁 > 𝟎 ∀𝒙 ∈

ℝ𝒅, where 𝝀𝒎𝒊𝒏 ∗ operator returns the smallest eigenvalue of *.So, 𝝁
should be less than or equal to the smallest eigenvalue of the Hessian

of the objective function.



Assumptions (for reference)

• [LSMOOTH] Each 𝑓𝑖 is convex, 𝐿-smooth (Lipschitz continuous gradient), ∃ 𝐿 > 0 𝑠. 𝑡.

𝑓𝑖 𝑥 − 𝑓𝑖 𝑦 ≤ 𝐿 𝑥 − 𝑦 , ∀𝑥, 𝑦 ∈ ℝ

• [L0L1S] (𝐿0, 𝐿1) smoothness



ADAM - Summary

• Combines Momentum and 
RMSProp techniques for 
accelerating/reducing variance

• Constant learning rate 
hyperparameters, but adaptive 
steps (bias corrected)

• Recursive batch gradient 
information

• No gradient table

• Converges 𝑶 𝟏

𝑻
for 𝑇

iterations 



ADAM Algorithm

Initialization
• Objective function 𝑓 ∈ ℝ𝑛×1

• Constant learning rate 𝜼
• Exponential decay rates 𝜷𝟏, 𝜷𝟐
• Epsilon 𝜺
• Vectors 𝑤0 ∈ ℝ1×𝑚, 𝑚0 ∈ ℝ1×𝑚, 𝑣0 ∈ ℝ1×𝑚

Loop:
• Stochastic (batch) Gradient step
• Gradient 1st moment estimate (mean of 

past grads), moving average param & 
bias correction

• Gradient 2nd moment estimate (ssqares
of past grads), moving average param & 
bias correction

• Parameter update
Typical choice: 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2= 0.999, 𝜀 = 1𝑒 − 8



ADAM Algorithm –Momentum

• 𝒎𝒕– exponential moving average 
based on previous aggregate 
batch gradient information

• This step is analogous to 
Momentum (same general idea as 
Acceleration)

• Estimate is biased toward 
initialization (zero), so an 
additional bias-correction step is 
employed



ADAM Algorithm –RMSProp

• 𝒗𝒕– exponential moving average 
of sum of squares of past 
gradients

• This step is RMSProp
• Estimate is biased toward 

initialization (zero), so an 
additional bias-correction step is 
employed



ADAM Algorithm –ADAM update

• Parameter update like descent, 
subtracting learning rate 𝜂 times 
bias-corrected Momentum ෝ𝒎𝒕

combined with bias-corrected 

RMSProp 1/( ෝ𝒗𝒕 + 𝜀).
• Variance reduction -> RMSProp

ෝ𝑚𝑡

ෞ𝑣𝑡
- Signal to Noise Ratio (SNR)



ADAM

https://wiki.cloudfactory.com/docs/mp-wiki/solvers-optimizers/rmsprop

Momentum uses average past gradient information to reduce variance, RMSProp adaptively 

scales learning rate by magnitude of current and average of past gradients



ADAM Convergence Summary

Under basic convexity assumptions for the objective,

ADAM is guaranteed convergence at rate 𝑶(
𝟏

𝑻
)

NOTE: There are known flaws in the original proof of 
Kingma and Ba that are addressed with (𝐿0, 𝐿1)
smoothness condition

For [CONVEX] and [L0L1S] objective



SARAH - Summary

• Very similar to SVRG (same 
hyperparameter choices)

• Modifies inner loop, uses recursive 
gradient info rather than only outer loop 
gradient

• Biased inner loop computations, 
but total expectation is unbiased

• Constant learning rate
• No gradient table
• Similar performance to SVRG, some 

advantages in strong convex cases



SARAH Algorithm

Initialization
• Constant learning rate 𝜼
• Objective function 
• Inner loop steps 𝒎
• Initial parameters ෥𝑤0

Outer Loop
• Full gradient descent update (“snapshot point”)
Inner Loop (Variance Reduction)
• Recursive Stochastic Gradient (one sample) 

estimate step (“SARAH” update)
• Parameter update
Stochastic Re-initialization
• Initialize random weight for outer loop ෥𝑤𝑠−1
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Italics are same steps as SVRG

SARAH

SVRG



SARAH Algorithm

Variance Reduction

The SARAH Algorithm first calculates a full 
gradient in the outer loop (like SVRG), then 
uses recursive stochastic gradient 
information 𝑣𝑡 at each iteration of the inner 
loop, rather than stochastic updates relative 
to outer loop full gradient calculation. O
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SARAH Algorithm

Bias
For SVRG, 𝑣𝑡 is an unbiased estimator for 
the gradient, 𝐸𝑖𝑡 𝑣𝑡 = 𝛻𝑃 ෥𝑤𝑡

Expectation of inner loop iterate is not equal 
to the full gradient “snapshot”, but the total 
expectation of the full loop is.

𝐸𝑖𝑡[𝑣𝑡] ≠ 𝛻𝑃(෥𝑤𝑡)

𝐸 𝑣𝑡 = 𝛻𝑃(෥𝑤𝑡) O
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SARAH Convergence Summary

For functions satisfying [CONVEX] and [LSMOOTH], we can 

guarantee convergence 𝑶( 𝒏 +
𝟏

𝜺
𝒍𝒐𝒈(

𝟏

𝜺
))

For [CONVEX], [LSMOOTH] objective

If our objective has [SCONVEX], SARAH guarantees 

convergence 𝑶( 𝒏 +
𝑳

𝝁
𝒍𝒐𝒈(

𝟏

𝜺
)).  Same order as 

SVRG, but uniformly better due to variance bound

For [CONVEX], [LSMOOTH], [SCONVEX]  objective

SARAH SVRG



SARAH Convergence Summary

SARAH converges at comparable rates 
to SVRG/SAG/SAGA for convex 
functions, but has significant advantages 
for strong convexity of the objective 
function.

Convergence comparisons

Recursive update does not require 
storage of past information, less 
computationally expensive that similar 
methods like SAG/SAGA

Computational advantages



SARAH –Nguyen, Liu, Scheinberg, Takac
Variance of inner loops approaches zero as 𝒎 increases for SARAH, does not for SVRG



Conclusions 

• Used in practice for fast 
convergence

• Adaptive unlike SGD 
methods, locally smooth

• Minimizes 
oscillations near 
optimal solution

• Batch descent can 
reduce noise

• SARAH doesn’t seem to 
be used as widely in 
practice, but has some 
nonconvex applications 
in use/research

• Ongoing research on 
modifications to 
algorithm, like random 
reshuffling, mini-batch, 
etc.

ADAM – Adaptive learning 
rate (with bias-correction)

SARAH – SGD constant 
learning rate (generally a 
“step in the right direction” 
from SVRG)

ADAM SARAH Comparisons



Numerical Experiment –GD, SARAH ADAM

• 500 features
• 10000 samples
• 3170 weight updates 

per algorithm

SARAH/SVRG – ~3.5s
ADAM – ~4.5s
GD – 95s

Data

Norm of least squares loss vs. Iteraions



Extensions/Further Research
For those interested…

ADAM

➔ AdaMax: Variant of ADAM that utilizes infinity norm for update in lieu of RMSProp
➔ Ada-class algorithms: AdaMax, Adadelta, Nadam (Nesterov momentum)

SARAH

➔ SARAH+: Variant of ADAM that utilizes infinity norm for update in lieu of RMSProp
➔ Random-Reshuffled SARAH: Does not need full gradient computations [1]
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Additional Resources
• Momentum: https://distill.pub/2017/momentum/?ref=blog.paperspace.com

• https://medium.com/analytics-vidhya/a-complete-guide-to-adam-and-rmsprop-optimizer-

75f4502d83be

• https://optimization.cbe.cornell.edu/index.php?title=Adam

• https://medium.com/geekculture/a-2021-guide-to-improving-cnns-optimizers-adam-vs-sgd-

495848ac6008

https://distill.pub/2017/momentum/?ref=blog.paperspace.com
https://medium.com/analytics-vidhya/a-complete-guide-to-adam-and-rmsprop-optimizer-75f4502d83be
https://medium.com/analytics-vidhya/a-complete-guide-to-adam-and-rmsprop-optimizer-75f4502d83be
https://optimization.cbe.cornell.edu/index.php?title=Adam
https://medium.com/geekculture/a-2021-guide-to-improving-cnns-optimizers-adam-vs-sgd-495848ac6008
https://medium.com/geekculture/a-2021-guide-to-improving-cnns-optimizers-adam-vs-sgd-495848ac6008


SARAH SVRG delta from numerical experiment slide



SARAH+ Algorithm

Initialization
• Constant learning rate*********
• Objective function 
• Initial parameters ෥𝑤0

Outer Loop
• Full gradient descent update (“snapshot point”)
Inner Loop (Variance Reduction)
• Recursive Stochastic Gradient (single sample) 

estimate step (“SARAH” update)
• Parameter update
Stochastic Re-initialization
• Initialize random weight for outer loop ෥𝑤𝑠−1

Break inner loop when 𝒗𝒕 is small enough
• Specify hyperparameter 𝜸 ∈ (𝟎, 𝟏]
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